14.6 C
Paris
Sunday, June 8, 2025

Nano-formulations in illness remedy: designs, advances, challenges, and future instructions | Journal of Nanobiotechnology


  • Jeevanandam J, Chan YS, Danquah MK. Nano-formulations of medication: latest developments, affect and challenges. Biochimie. 2016;128–129:99–112.

    Article 
    PubMed 

    Google Scholar
     

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, et al. Biodegradable polymeric nanoparticles as drug supply units. J Management Launch. 2001;70(1–2):1–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erdoğar N, Akkın S, Bilensoy E. Nanocapsules for drug supply: an up to date overview of the final decade. Latest Pat Drug Deliv Formul. 2018;12(4):252–66.

    Article 
    PubMed 

    Google Scholar
     

  • Miguel RDA, Hirata AS, Jimenez PC, et al. Past formulation: contributions of nanotechnology for translation of anticancer pure merchandise into new medicine. Pharmaceutics. 2022;14(8):1772.

    Article 

    Google Scholar
     

  • Gregoriadis G, Ryman BE. Liposomes as carriers of enzymes or medicine: a brand new method to the remedy of storage ailments. Biochem J. 1971;124(5):58p.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stone NR, Bicanic T, Salim R, et al. Liposomal amphotericin B (AmBisome(®)): a overview of the pharmacokinetics, pharmacodynamics, medical expertise and future instructions. Medicine. 2016;76(4):485–500.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Porche DJ. Liposomal doxorubicin (Doxil). J Assoc Nurses AIDS Care. 1996;7(2):55–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gradishar WJ, Tjulandin S, Davidson N, et al. Part III trial of nanoparticle albumin-bound paclitaxel in contrast with polyethylated castor oil-based paclitaxel in girls with breast most cancers. J Clin Oncol. 2005;23(31):7794–803.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee KS, Chung HC, Im SA, et al. Multicenter section II trial of genexol-PM, a cremophor-free, polymeric micelle formulation of paclitaxel, in sufferers with metastatic breast most cancers. Breast Most cancers Res Deal with. 2008;108(2):241–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alfayez M, Kantarjian H, Kadia T, et al. CPX-351 (vyxeos) in AML. Leuk Lymphoma. 2020;61(2):288–97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoy SM. Patisiran: first international approval. Medicine. 2018;78(15):1625–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duggan S. Caplacizumab: first international approval. Medicine. 2018;78(15):1639–42.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teo SP. Assessment of COVID-19 mRNA vaccines: BNT162b2 and mRNA-1273. J Pharm Pract. 2022;35(6):947–51.

    Article 
    PubMed 

    Google Scholar
     

  • Hargreaves R, Ferreira JC, Hughes D, et al. Improvement of aprepitant, the primary neurokinin-1 receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. Ann NY Acad Sci. 2011;1222:40–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan O, Chaudary N. Using Amikacin liposome inhalation suspension (Arikayce) within the remedy of refractory nontuberculous mycobacterial lung illness in adults. Drug Des Devel Ther. 2020;14:2287–94.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dean AQ, Luo S, Twomey JD, et al. Concentrating on most cancers with antibody-drug conjugates: guarantees and challenges. MAbs. 2021;13(1):1951427.

    Article 
    PubMed 

    Google Scholar
     

  • Nelemans LC, Gurevich L. Drug supply with polymeric nanocarriers-cellular uptake mechanisms. Supplies. 2020;13(2):1.

    Article 

    Google Scholar
     

  • Alqosaibi AI. Nanocarriers for anticancer medicine: challenges and views. Saudi J Biol Sci. 2022;29(6): 103298.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghanbari-Movahed M, Kaceli T, Mondal A, et al. Latest advances in improved anticancer efficacies of camptothecin nano-formulations: a scientific overview. Biomedicines. 2021;9(5):1.

    Article 

    Google Scholar
     

  • Kubik T, Bogunia-Kubik Okay, Sugisaka M. Nanotechnology on obligation in medical functions. Curr Pharm Biotechnol. 2005;6(1):17–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sinha R, Kim GJ, Nie S, et al. Nanotechnology in most cancers therapeutics: bioconjugated nanoparticles for drug supply. Mol Most cancers Ther. 2006;5(8):1909–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Elzoghby AO, Abdelmoneem MA, Hassanin IA, et al. Lactoferrin, a multi-functional glycoprotein: energetic therapeutic, drug nanocarrier & concentrating on ligand. Biomaterials. 2020;263: 120355.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miao D, Jiang M, Liu Z, et al. Co-administration of dual-targeting nanoparticles with penetration enhancement peptide for antiglioblastoma remedy. Mol Pharm. 2014;11(1):90–101.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Godlewska M, Majkowska-Pilip A, Stachurska A, et al. Voltammetric and organic research of folate-targeted non-lamellar lipid mesophases. Electrochim Acta. 2019;299:1–11.

    Article 
    CAS 

    Google Scholar
     

  • Wei D, Solar Y, Zhu H, et al. Stimuli-responsive polymer-based nanosystems for most cancers theranostics. ACS Nano. 2023;17(23):23223–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin X, Tune X, Zhang Y, et al. Multifunctional theranostic nanosystems enabling photothermal-chemo mixture remedy of triple-stimuli-responsive drug launch with magnetic resonance imaging. Biomater Sci. 2020;8(7):1875–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen L, Hong W, Ren W, et al. Latest progress in focused supply vectors primarily based on biomimetic nanoparticles. Sign Transduct Goal Ther. 2021;6(1):225.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang RH, Kroll AV, Gao W, et al. Cell membrane coating nanotechnology. Adv Mater. 2018;30(23): e1706759.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han X, Shen S, Fan Q, et al. Purple blood cell-derived nanoerythrosome for antigen supply with enhanced most cancers immunotherapy. Sci Adv. 2019;5(10):eaaw6870.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parodi A, Quattrocchi N, van de Ven AL, et al. Artificial nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like capabilities. Nat Nanotechnol. 2013;8(1):61–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Zhao P, Luo Z, et al. Most cancers cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal remedy. ACS Nano. 2016;10(11):10049–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong J, Wu M, Chen J, et al. Most cancers-erythrocyte hybrid membrane-camouflaged magnetic nanoparticles with enhanced photothermal-immunotherapy for ovarian most cancers. ACS Nano. 2021;15(12):19756–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kao CY, Papoutsakis ET. Extracellular vesicles: exosomes, microparticles, their components, and their targets to allow their biomanufacturing and medical functions. Curr Opin Biotechnol. 2019;60:89–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug supply, imaging, immunotherapy, and theranostic functions. Adv Drug Deliv Rev. 2020;156:214–35.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao Y, Li A, Jiang L, et al. Hybrid membrane-coated biomimetic nanoparticles (HM@BNPs): a multifunctional nanomaterial for biomedical functions. Biomacromol. 2021;22(8):3149–67.

    Article 
    CAS 

    Google Scholar
     

  • Pitchaimani A, Nguyen TDT, Aryal S. Pure killer cell membrane infused biomimetic liposomes for focused tumor remedy. Biomaterials. 2018;160:124–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng S, Xu C, Jin Y, et al. Synthetic mini dendritic cells enhance T cell-based immunotherapy for ovarian most cancers. Adv Sci. 2020;7(7):1903301.

    Article 
    CAS 

    Google Scholar
     

  • Mukker JK, Singh RSP. Pharmacokinetic modeling in nano-formulations: idea, implementation and challenges. Curr Pharm Des. 2018;24(43):5175–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chopra A. Cy5.5-Conjugated glycol chitosan-5β-cholanic acid nanoparticles. In Molecular Imaging and Distinction Agent Database (MICAD). Bethesda (MD): Nationwide Middle for Biotechnology Data (US); 2004

  • Wang M, Thanou M. Concentrating on nanoparticles to most cancers. Pharmacol Res. 2010;62(2):90–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Belyaev IB, Griaznova OY, Yaremenko AV, et al. Past the EPR impact: Intravital microscopy evaluation of nanoparticle drug supply to tumors. Adv Drug Deliv Rev. 2025;219: 115550.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu X, Hu JJ, Yoon J. Cell membrane as a promising therapeutic goal: from supplies design to biomedical functions. Angew Chem Int Ed Engl. 2024;63(18): e202400249.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou D, Wu Z, Yi X, et al. Nanoparticle elasticity regulates the formation of cell membrane-coated nanoparticles and their nano-bio interactions. Proc Natl Acad Sci USA. 2023;120(1): e2214757120.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walkey CD, Olsen JB, Guo H, et al. Nanoparticle measurement and floor chemistry decide serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134(4):2139–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Kröger M, Liu WK. Form impact in mobile uptake of PEGylated nanoparticles: comparability between sphere, rod, dice and disk. Nanoscale. 2015;7(40):16631–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parakhonskiy B, Zyuzin MV, Yashchenok A, et al. The affect of the dimensions and facet ratio of anisotropic, porous CaCO3 particles on their uptake by cells. J Nanobiotechnol. 2015;13:53.

    Article 

    Google Scholar
     

  • Dong N, Liu Z, He H, et al. “Hook&Loop” multivalent interactions primarily based on disk-shaped nanoparticles strengthen energetic concentrating on. J Management Launch. 2023;354:279–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nguyen LNM, Lin ZP, Sindhwani S, et al. The exit of nanoparticles from strong tumours. Nat Mater. 2023;22(10):1261–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Zhou Y, Lyu Q, et al. Focused protein supply primarily based on stimuli-triggered nanomedicine. Exploration. 2024;4(3):20230025.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen X, Fan X, Zhang Y, et al. Cooperative coordination-mediated multi-component self-assembly of “all-in-one” nanospike theranostic nano-platform for MRI-guided synergistic remedy towards breast most cancers. Acta Pharm Sin B. 2022;12(9):3710–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeevanandam J, Barhoum A, Chan YS, et al. Assessment on nanoparticles and nanostructured supplies: historical past, sources, toxicity and laws. Beilstein J Nanotechnol. 2018;9:1050–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng Okay, Luo Z, Tan L, et al. Self-assembly of anisotropic nanoparticles into useful superstructures. Chem Soc Rev. 2020.

  • Li J, Jia X. Picture-controlled self-assembly of nanoparticles: a promising technique for improvement of novel constructions. Nanomaterials. 2023;13:18.

    Article 

    Google Scholar
     

  • Cheng S, Grest GS. Dispersing Nanoparticles in a Polymer Movie through Solvent Evaporation. ACS Macro Lett. 2016;5(6):694–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iqbal M, Zafar N, Fessi H, et al. Double emulsion solvent evaporation strategies used for drug encapsulation. Int J Pharm. 2015;496(2):173–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mosayebi J, Kiyasatfar M, Laurent S. Synthesis, functionalization, and design of magnetic nanoparticles for theranostic functions. Adv Healthc Mater. 2017;6(23):1.

    Article 

    Google Scholar
     

  • Devalapally H, Shenoy D, Little S, et al. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted supply of hydrophobic medicine: half 3. Therapeutic efficacy and security research in ovarian most cancers xenograft mannequin. Most cancers Chemother Pharmacol. 2007;59(4):477–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bertrand N, Wu J, Xu X, et al. Most cancers nanotechnology: the affect of passive and energetic concentrating on within the period of contemporary most cancers biology. Adv Drug Deliv Rev. 2014;66:2–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maeda H. Towards a full understanding of the EPR impact in main and metastatic tumors in addition to points associated to its heterogeneity. Adv Drug Deliv Rev. 2015;91:3–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi J, Kantoff PW, Wooster R, et al. Most cancers nanomedicine: progress, challenges and alternatives. Nat Rev Most cancers. 2017;17(1):20–37.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cornu R, Béduneau A, Martin H. Affect of nanoparticles on liver tissue and hepatic capabilities: a overview. Toxicology. 2020;430: 152344.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Önal Acet B, Gül D, Stauber RH, et al. A overview for uncovering the “protein-nanoparticle alliance”: implications of the protein corona for biomedical functions. Nanomaterials. 2024;14:10.

    Article 

    Google Scholar
     

  • Chen F, Wang G, Griffin JI, et al. Complement proteins bind to nanoparticle protein corona and endure dynamic trade in vivo. Nat Nanotechnol. 2017;12(4):387–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fröhlich E. Mobile elimination of nanoparticles. Environ Toxicol Pharmacol. 2016;46:90–4.

    Article 
    PubMed 

    Google Scholar
     

  • Hoshyar N, Grey S, Han H, et al. The impact of nanoparticle measurement on in vivo pharmacokinetics and mobile interplay. Nanomedicine. 2016;11(6):673–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poon W, Zhang YN, Ouyang B, et al. Elimination pathways of nanoparticles. ACS Nano. 2019;13(5):5785–98.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang YN, Poon W, Tavares AJ, et al. Nanoparticle-liver interactions: mobile uptake and hepatobiliary elimination. J Management Launch. 2016;240:332–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Model W, Noorlander CW, Giannakou C, et al. Nanomedicinal merchandise: a survey on particular toxicity and unintended effects. Int J Nanomedicine. 2017;12:6107–29.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stone V, Johnston H, Schins RP. Improvement of in vitro programs for nanotoxicology: methodological issues. Crit Rev Toxicol. 2009;39(7):613–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shiraishi Okay, Yokoyama M. Toxicity and immunogenicity considerations associated to PEGylated-micelle service programs: a overview. Sci Technol Adv Mater. 2019;20(1):324–36.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen J, Mao L, Jiang Y, et al. Revealing the In Situ conduct of aggregation-induced emission nanoparticles and their biometabolic results through mass spectrometry imaging. ACS Nano. 2023;17(5):4463–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Portilho FL, Helal-Neto E, Cabezas SS, et al. Magnetic core mesoporous silica nanoparticles doped with dacarbazine and labelled with 99mTc for early and differential detection of metastatic melanoma by single photon emission computed tomography. Artif Cells Nanomed Biotechnol. 2018;46(sup1):1080–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li P, Wang D, Hu J, et al. The function of imaging in focused supply of nanomedicine for most cancers remedy. Adv Drug Deliv Rev. 2022;189: 114447.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang D, Pan Y, Chen W, et al. Nanodrugs concentrating on key components of ferroptosis regulation for enhanced remedy of osteoarthritis. Adv Sci. 2025;12(11): e2412817.

    Article 

    Google Scholar
     

  • The L. GLOBOCAN 2018: counting the toll of most cancers. Lancet. 2018;392(10152):985.

    Article 

    Google Scholar
     

  • Gotwals P, Cameron S, Cipolletta D, et al. Prospects for combining focused and traditional most cancers remedy with immunotherapy. Nat Rev Most cancers. 2017;17(5):286–301.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romanini A, Tanganelli L, Carnino F, et al. First-line chemotherapy with epidoxorubicin, paclitaxel, and carboplatin for the remedy of superior epithelial ovarian most cancers sufferers. Gynecol Oncol. 2003;89(3):354–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Q, Yang Z, Nie Y, et al. Multi-drug resistance in most cancers chemotherapeutics: mechanisms and lab approaches. Most cancers Lett. 2014;347(2):159–66.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brannon-Peppas L, Blanchette JO. Nanoparticle and focused programs for most cancers remedy. Adv Drug Deliv Rev. 2004;56(11):1649–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Janjic A, Cayoren M, Akduman I, et al. SAFE: a novel microwave imaging system design for breast most cancers screening and early detection-clinical analysis. Diagnostics. 2021;11:3.

    Article 

    Google Scholar
     

  • Kuai R, Li D, Chen YE, et al. Excessive-density lipoproteins: nature’s multifunctional nanoparticles. ACS Nano. 2016;10(3):3015–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang X, Lin L, Liu R, et al. Anisotropy in form and ligand‐conjugation of hybrid nanoparticulates manipulates the mode of bio–nano interplay and its consequence. 2017;27(31):1700406.

  • Zheng G, Chen J, Li H, et al. Rerouting lipoprotein nanoparticles to chose alternate receptors for the focused supply of most cancers diagnostic and therapeutic brokers. Proc Natl Acad Sci USA. 2005;102(49):17757–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bariwal J, Ma H, Altenberg GA, et al. Nanodiscs: a flexible nanocarrier platform for most cancers prognosis and remedy. Chem Soc Rev. 2022;51(5):1702–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng H, Wang M, Wu C, et al. Excessive scavenger receptor class B kind I expression is said to tumor aggressiveness and poor prognosis in lung adenocarcinoma: a STROBE compliant article. Drugs. 2018;97(13): e0203.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang J, Kuai R, Yuan W, et al. Impact of measurement and pegylation of liposomes and peptide-based artificial lipoproteins on tumor concentrating on. Nanomedicine. 2017;13(6):1869–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen W, Jarzyna PA, van Tilborg GA, et al. RGD peptide functionalized and reconstituted high-density lipoprotein nanoparticles as a flexible and multimodal tumor concentrating on molecular imaging probe. Faseb J. 2010;24(6):1689–99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li W, Yu H, Ding D, et al. Chilly atmospheric plasma and iron oxide-based magnetic nanoparticles for synergetic lung most cancers remedy. Free Radical Biol Med. 2019;130:71–81.

    Article 
    CAS 

    Google Scholar
     

  • Gao P, Mei C, He L, et al. Designing multifunctional cancer-targeted nanosystem for magnetic resonance molecular imaging-guided theranostics of lung most cancers. Drug Deliv. 2018;25(1):1811–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tiwari N, Gheldof A, Tatari M, et al. EMT as the final word survival mechanism of most cancers cells. Semin Most cancers Biol. 2012;22(3):194–207.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for most cancers. Nat Rev Mol Cell Biol. 2019;20(2):69–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diepenbruck M, Christofori G. Epithelial-mesenchymal transition (EMT) and metastasis: sure, no, possibly? Curr Opin Cell Biol. 2016;43:7–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ang HL, Mohan CD, Shanmugam MK, et al. Mechanism of epithelial-mesenchymal transition in most cancers and its regulation by pure compounds. Med Res Rev. 2023;43(4):1141–200.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Balakrishnan S, Bhat FA, Raja Singh P, et al. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness through EGFR/VEGFR-2-mediated pathway in breast most cancers. Cell Prolif. 2016;49(6):678–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agarwalla P, Mukherjee S, Sreedhar B, et al. Glucocorticoid receptor-mediated supply of nano gold-withaferin conjugates for reversal of epithelial-to-mesenchymal transition and tumor regression. Nanomedicine. 2016;11(19):2529–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Baghi N, Bakhshinejad B, Keshavarz R, et al. Dendrosomal nanocurcumin and exogenous p53 can act synergistically to elicit anticancer results on breast most cancers cells. Gene. 2018;670:55–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumari M, Ray L, Purohit MP, et al. Curcumin loading potentiates the chemotherapeutic efficacy of selenium nanoparticles in HCT116 cells and Ehrlich’s ascites carcinoma bearing mice. Eur J Pharm Biopharm. 2017;117:346–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumari M, Purohit MP, Patnaik S, et al. Curcumin loaded selenium nanoparticles synergize the anticancer potential of doxorubicin contained in self-assembled, cell receptor focused nanoparticles. Eur J Pharm Biopharm. 2018;130:185–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang S, Ji X, Liu Z, et al. Bimetallic nanoplatforms for prostate most cancers remedy by interfering mobile communication. J Am Chem Soc. 2024;146(32):22530–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu J. The improved permeability and retention (EPR) impact: the importance of the idea and strategies to boost its software. J Pers Med. 2021;11(8):771.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danhier F, Feron O, Préat V. To use the tumor microenvironment: Passive and energetic tumor concentrating on of nanocarriers for anti-cancer drug supply. J Management Launch. 2010;148(2):135–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muggia F, Kudlowitz D. Novel taxanes. Anticancer Medicine. 2014;25(5):593–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan L, Peng J, Zhao Q, et al. A novel MPEG-PDLLA-PLL copolymer for docetaxel supply in breast most cancers remedy. Theranostics. 2017;7(10):2652–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xiao W, Suby N, Xiao Okay, et al. Extraordinarily lengthy tumor retention, multi-responsive boronate crosslinked micelles with superior therapeutic efficacy for ovarian most cancers. J Management Launch. 2017;264:169–79.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He H, Liu L, Morin EE, et al. Survey of medical translation of most cancers nanomedicines—classes realized from successes and failures. Acc Chem Res. 2019;52(9):2445–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Youn YS, Bae YH. Views on the previous, current, and way forward for most cancers nanomedicine. Adv Drug Deliv Rev. 2018;130:3–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, van Steenbergen MJ, Beztsinna N, et al. Biotin-decorated all-HPMA polymeric micelles for paclitaxel supply. J Management Launch. 2020;328:970–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu L, Deng Y, Zheng Z, et al. Hsp90 inhibitor STA9090 sensitizes hepatocellular carcinoma to hyperthermia-induced DNA injury by suppressing DNA-PKcs protein stability and mRNA transcription. Mol Most cancers Ther. 2021;20(10):1880–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia L, Yang H, Liu Y, et al. Focused supply of HSP90 inhibitors for environment friendly remedy of CD44-positive acute myeloid leukemia and strong tumor-colon most cancers. J Nanobiotechnol. 2024;22(1):198.

    Article 
    CAS 

    Google Scholar
     

  • Sprint P, Piras AM, Sprint M. Cell membrane coated nanocarriers – an environment friendly biomimetic platform for focused remedy. J Management Launch. 2020;327:546–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Lu J, Yan C, et al. Tumor cell membrane-coated biomimetic nanoplatform for homologous focused remedy of colorectal carcinoma. Int J Polym Mater. 2019:1–10.

  • Baxevanis CN, Perez SA, Papamichail M. Most cancers immunotherapy. Crit Rev Clin Lab Sci. 2009;46(4):167–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan S, Luo Z, Li Z, et al. Bettering most cancers immunotherapy outcomes utilizing biomaterials. Angew Chem Int Ed Engl. 2020;59(40):17332–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sterner RC, Sterner RM. CAR-T cell remedy: present limitations and potential methods. Blood Most cancers J. 2021;11(4):69.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh AK, McGuirk JP. CAR T cells: continuation in a revolution of immunotherapy. Lancet Oncol. 2020;21(3):e168–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin JD, Cabral H, Stylianopoulos T, et al. Bettering most cancers immunotherapy utilizing nanomedicines: progress, alternatives and challenges. Nat Rev Clin Oncol. 2020;17(4):251–66.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Xu H, Weng L, et al. Activation of most cancers immunotherapy by nanomedicine. Entrance Pharmacol. 2022;13:1041073.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kennedy LB, Salama AKS. A overview of most cancers immunotherapy toxicity. CA Most cancers J Clin. 2020;70(2):86–104.

    Article 
    PubMed 

    Google Scholar
     

  • Liu YT, Solar ZJ. Turning chilly tumors into scorching tumors by bettering T-cell infiltration. Theranostics. 2021;11(11):5365–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang Y, Zheng J. Capabilities of immune checkpoint molecules past immune evasion. Adv Exp Med Biol. 2020;1248:201–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanaei MJ, Pourbagheri-Sigaroodi A, Kaveh V, et al. The applying of nano-medicine to beat the challenges associated to immune checkpoint blockades in most cancers immunotherapy: latest advances and alternatives. Crit Rev Oncol Hematol. 2021;157: 103160.

    Article 
    PubMed 

    Google Scholar
     

  • Kapadia CH, Perry JL, Tian S, et al. Nanoparticulate immunotherapy for most cancers. J Management Launch. 2015;219:167–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. 5-year survival with mixed nivolumab and ipilimumab in superior melanoma. N Engl J Med. 2019;381(16):1535–46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • André T, Lonardi S, Wong KYM, et al. Nivolumab plus low-dose ipilimumab in beforehand handled sufferers with microsatellite instability-high/mismatch repair-deficient metastatic colorectal most cancers: 4-year follow-up from CheckMate 142. Ann Oncol. 2022;33(10):1052–60.

    Article 
    PubMed 

    Google Scholar
     

  • Hellmann MD, Paz-Ares L, Bernabe Caro R, et al. Nivolumab plus ipilimumab in superior non-small-cell lung most cancers. N Engl J Med. 2019;381(21):2020–31.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chirnomas D, Hornberger KR, Crews CM. Protein degraders enter the clinic – a brand new method to most cancers remedy. Nat Rev Clin Oncol. 2023;20(4):265–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bondeson DP, Mares A, Smith IE, et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol. 2015;11(8):611–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen Y, Tandon I, Heelan W, et al. Proteolysis-targeting chimera (PROTAC) supply system: advancing protein degraders in direction of medical translation. Chem Soc Rev. 2022;51(13):5330–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang L, Yang Y, Zhang J, et al. Sequential responsive nano-PROTACs for exact intracellular supply and enhanced degradation efficacy in colorectal most cancers remedy. Sign Transduct Goal Ther. 2024;9(1):275.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gauthier J, Yakoub-Agha I. Chimeric antigen-receptor T-cell remedy for hematological malignancies and strong tumors: medical knowledge to this point, present limitations and views. Curr Res Transl Med. 2017;65(3):93–102.

    CAS 
    PubMed 

    Google Scholar
     

  • Kosti P, Maher J, Arnold JN. Views on chimeric antigen receptor T-cell immunotherapy for strong tumors. Entrance Immunol. 2018;9:1104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang L, Zheng Y, Melo MB, et al. Enhancing T cell remedy by means of TCR-signaling-responsive nanoparticle drug supply. Nat Biotechnol. 2018;36(8):707–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo Y, Chen Z, Solar M, et al. IL-12 nanochaperone-engineered CAR T cell for sturdy tumor-immunotherapy. Biomaterials. 2022;281: 121341.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sivaram AJ, Wardiana A, Howard CB, et al. Latest advances within the technology of antibody-nanomaterial conjugates. Adv Healthc Mater. 2018;7(1):1.

    Article 

    Google Scholar
     

  • Richards DA, Maruani A, Chudasama V. Antibody fragments as nanoparticle concentrating on ligands: a step in the proper route. Chem Sci. 2017;8(1):63–77.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng Z, Al Zaki A, Hui JZ, et al. Multifunctional nanoparticles: value versus advantage of including concentrating on and imaging capabilities. Science. 2012;338(6109):903–10.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acharya S, Dilnawaz F, Sahoo SK. Focused epidermal development issue receptor nanoparticle bioconjugates for breast most cancers remedy. Biomaterials. 2009;30(29):5737–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saniee F, Shabani Ravari N, Goodarzi N, et al. Glutamate-urea-based PSMA-targeted PLGA nanoparticles for prostate most cancers supply of docetaxel. Pharm Dev Technol. 2021;26(4):381–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dhritlahre RK, Saneja A. Latest advances in HER2-targeted supply for most cancers remedy. Drug Discov As we speak. 2021;26(5):1319–29.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nieto C, Vega MA, Martín Del Valle EM. Trastuzumab: greater than a information in HER2-positive most cancers nanomedicine. Nanomaterials. 2020;10(9):1.

    Article 

    Google Scholar
     

  • Liu Y, Li Okay, Liu B, et al. A technique for precision engineering of nanoparticles of biodegradable copolymers for quantitative management of focused drug supply. Biomaterials. 2010;31(35):9145–55.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abedin MR, Powers Okay, Aiardo R, et al. Antibody-drug nanoparticle induces synergistic remedy efficacies in HER2 optimistic breast most cancers cells. Sci Rep. 2021;11(1):7347.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gan J, Lei J, Li Y, et al. Manganese oxide-incorporated hybrid lipid nanoparticles amplify the efficiency of mrna vaccine through oxygen technology and STING activation. J Am Chem Soc. 2024;146(47):32689–700.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rana PS, Ignatz-Hoover JJ, Guo C, et al. Immunoproteasome activation expands the MHC class I immunopeptidome, unmasks neoantigens, and enhances T-cell anti-myeloma exercise. Mol Most cancers Ther. 2024;23(12):1743–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haist M, Mailänder V, Bros M. Nanodrugs concentrating on T cells in tumor remedy. Entrance Immunol. 2022;13: 912594.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in most cancers: mechanistic foundation and therapeutic methods. Semin Most cancers Biol. 2015;35(Suppl):S185–98.

    Article 
    PubMed 

    Google Scholar
     

  • Tan Y, Chen H, Gou X, et al. Tumor vaccines: towards multidimensional anti-tumor therapies. Hum Vaccin Immunother. 2023;19(3):2271334.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu T, Yao W, Solar W, et al. Parts, formulations, deliveries, and combos of tumor vaccines. ACS Nano. 2024;18(29):18801–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Tune D, Wang Z, et al. Antitumour vaccination through the focused proteolysis of antigens remoted from tumour lysates. Nat Biomed Eng. 2024;9(2):234–48.

    Article 
    PubMed 

    Google Scholar
     

  • Hui L, Chen Y. Tumor microenvironment: sanctuary of the satan. Most cancers Lett. 2015;368(1):7–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar Y. Translational horizons within the tumor microenvironment: harnessing breakthroughs and concentrating on cures. Med Res Rev. 2015;35(2):408–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Magnon C, Corridor SJ, Lin J, et al. Autonomic nerve improvement contributes to prostate most cancers development. Science. 2013;341(6142):1236361.

    Article 
    PubMed 

    Google Scholar
     

  • Hanahan D, Monje M. Most cancers hallmarks intersect with neuroscience within the tumor microenvironment. Most cancers Cell. 2023;41(3):573–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cervantes-Villagrana RD, Albores-García D, Cervantes-Villagrana AR, et al. Tumor-induced neurogenesis and immune evasion as targets of revolutionary anti-cancer therapies. Sign Transduct Goal Ther. 2020;5(1):99.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakagawara A. Trk receptor tyrosine kinases: a bridge between most cancers and neural improvement. Most cancers Lett. 2001;169(2):107–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li M, Zhou H, Yang C, et al. Bacterial outer membrane vesicles as a platform for biomedical functions: an replace. J Management Launch. 2020;323:253–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin J, Liu J, Wei Z, et al. Focused intervention in nerve–most cancers crosstalk enhances pancreatic most cancers chemotherapy.1–14.

  • Liu H, Zhu X, Wei Y, et al. Latest advances in focused gene silencing and most cancers remedy by nanoparticle-based supply programs. Biomed Pharmacother. 2023;157: 114065.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gujrati M, Vaidya AM, Mack M, et al. Focused twin pH-sensitive lipid ECO/siRNA self-assembly nanoparticles facilitate in vivo cytosolic sieIF4E supply and overcome paclitaxel resistance in breast most cancers remedy. Adv Healthc Mater. 2016;5(22):2882–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang Q, Liu J, Jiang Y, et al. Cell-selective messenger RNA supply and CRISPR/Cas9 genome modifying by modulating the interface of phenylboronic acid-derived lipid nanoparticles and mobile floor sialic acid. ACS Appl Mater Interfaces. 2019;11(50):46585–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen Z, Xiong M, Tian J, et al. Encapsulation and evaluation of therapeutic cargo in engineered exosomes: a scientific overview. J Nanobiotechnol. 2024;22(1):18.

    Article 
    CAS 

    Google Scholar
     

  • Cheng Z, Li M, Dey R, et al. Nanomaterials for most cancers remedy: present progress and views. J Hematol Oncol. 2021;14(1):85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hadla M, Palazzolo S, Corona G, et al. Exosomes improve the therapeutic index of doxorubicin in breast and ovarian most cancers mouse fashions. Nanomedicine. 2016;11(18):2431–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhuo Y, Luo Z, Zhu Z, et al. Direct cytosolic supply of siRNA through cell membrane fusion utilizing cholesterol-enriched exosomes. Nat Nanotechnol. 2024;19(12):1858–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Osaki T, Yokoe I, Sunden Y, et al. Efficacy of 5-aminolevulinic acid in photodynamic detection and photodynamic remedy in veterinary medication. Cancers. 2019;11(4):5.

    Article 

    Google Scholar
     

  • Zhuo X, Liu Z, Aishajiang R, et al. Latest progress of copper-based nanomaterials in tumor-targeted photothermal remedy/photodynamic remedy. Pharmaceutics. 2023;15(9):1.

    Article 

    Google Scholar
     

  • Qin L, Yan P, Xie C, et al. Gold nanorod-assembled ZnGa(2)O(4): Cr nanofibers for LED-amplified gene silencing in most cancers cells. Nanoscale. 2018;10(28):13432–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Franskevych D, Prylutska S, Grynyuk I, et al. Mode of photoexcited C(60) fullerene involvement in potentiating cisplatin toxicity towards drug-resistant L1210 cells. Bioimpacts. 2019;9(4):211–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grebinyk A, Prylutska S, Chepurna O, et al. Synergy of chemo- and photodynamic therapies with C(60) fullerene-doxorubicin nanocomplex. Nanomaterials. 2019;9(11):1.

    Article 

    Google Scholar
     

  • Liu J, Zhu C, Xu L, et al. Nanoenabled intracellular calcium bursting for protected and environment friendly reversal of drug resistance in tumor cells. Nano Lett. 2020;20(11):8102–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higgins CF. A number of molecular mechanisms for multidrug resistance transporters. Nature. 2007;446(7137):749–57.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou J, Xing X, Teng C, et al. Cocrystal@protein-anchoring nanococktail for combinatorially treating multidrug-resistant most cancers. Acta Pharm Sin B. 2024;14(10):4509–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel NR, Pattni BS, Abouzeid AH, et al. Nanopreparations to beat multidrug resistance in most cancers. Adv Drug Deliv Rev. 2013;65(13–14):1748–62.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng Y, Su C, Zhao L, et al. mAb MDR1-modified chitosan nanoparticles overcome acquired EGFR-TKI resistance by means of two potential therapeutic targets modulation of MDR1 and autophagy. J Nanobiotechnol. 2017;15(1):66.

    Article 

    Google Scholar
     

  • Levy JMM, Towers CG, Thorburn A. Concentrating on autophagy in most cancers. Nat Rev Most cancers. 2017;17(9):528–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma Z, Lin Okay, Tang M, et al. A pH-driven small-molecule nanotransformer hijacks lysosomes and overcomes autophagy-induced resistance in most cancers. Angew Chem Int Ed Engl. 2022;61(35): e202204567.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • International, regional, and nationwide deaths, prevalence, disability-adjusted life years, and years lived with incapacity for continual obstructive pulmonary illness and bronchial asthma, 1990–2015: a scientific evaluation for the International Burden of Illness Examine 2015. Lancet Respir Med. 2017;5(9):691–706.

  • Forest V, Pourchez J. Nano-delivery to the lung – by inhalation or different routes and why nano when micro is essentially adequate? Adv Drug Deliv Rev. 2022;183: 114173.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou QT, Leung SS, Tang P, et al. Inhaled formulations and pulmonary drug supply programs for respiratory infections. Adv Drug Deliv Rev. 2015;85:83–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin Z, Gao Q, Wu Okay, et al. Harnessing inhaled nanoparticles to beat the pulmonary barrier for respiratory illness remedy. Adv Drug Deliv Rev. 2023;202: 115111.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ngan CL, Asmawi AA. Lipid-based pulmonary supply system: a overview and future issues of formulation methods and limitations. Drug Deliv Transl Res. 2018;8(5):1527–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joshi Okay, Chandra A, Jain Okay, et al. Nanocrystalization: an rising expertise to boost the bioavailability of poorly soluble medicine. Pharm Nanotechnol. 2019;7(4):259–78.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmad J, Akhter S, Rizwanullah M, et al. Nanotechnology-based inhalation remedies for lung most cancers: cutting-edge. Nanotechnol Sci Appl. 2015;8:55–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng S, Wang W, Zhang R, et al. Nano-formulations for pulmonary supply: previous, current, and future views. Pharmaceutics. 2024;16(2):4.

    Article 

    Google Scholar
     

  • Golia A, Mahmood BR, Fundora Y, et al. Amikacin Liposome Inhalation Suspension for Mycobacterium avium Complicated Lung Illness. Sr Care Pharm. 2020; 35(4): 162–70.

  • Ziaei E, Emami J, Rezazadeh M, et al. Pulmonary supply of docetaxel and celecoxib by PLGA porous microparticles for his or her synergistic results towards lung most cancers. Anticancer Brokers Med Chem. 2022;22(5):951–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Campbell NRC, Ordunez P, Giraldo G, et al. WHO HEARTS: a worldwide program to scale back heart problems burden: expertise implementing within the Americas and alternatives in Canada. Can J Cardiol. 2021;37(5):744–55.

    Article 
    PubMed 

    Google Scholar
     

  • Wang H, Hsu JC, Tune W, et al. Nanorepair medication for remedy of organ damage. Natl Sci Rev. 2024;11(9):nwae280.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elsabahy M, Heo GS, Lim SM, et al. Polymeric nanostructures for imaging and remedy. Chem Rev. 2015;115(19):10967–1011.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide: characterization of a brand new class of distinction brokers for MR imaging. Radiology. 1990;175(2):489–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanza GM, Wallace KD, Scott MJ, et al. A novel site-targeted ultrasonic distinction agent with broad biomedical software. Circulation. 1996;94(12):3334–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lanza GM, Wallace KD, Fischer SE, et al. Excessive-frequency ultrasonic detection of thrombi with a focused distinction system. Ultrasound Med Biol. 1997;23(6):863–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Park D, Cho Y, Goh SH, et al. Hyaluronic acid-polypyrrole nanoparticles as pH-responsive theranostics. Chem Commun. 2014;50(95):15014–7.

    Article 
    CAS 

    Google Scholar
     

  • Qin J, Peng Z, Li B, et al. Gold nanorods as a theranostic platform for in vitro and in vivo imaging and photothermal remedy of inflammatory macrophages. Nanoscale. 2015;7(33):13991–4001.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang S, Lee HW, Jeon YH, et al. Mixed fluorescence and magnetic resonance imaging of main macrophage migration to websites of acute irritation utilizing near-infrared fluorescent magnetic nanoparticles. Mol Imaging Biol. 2015;17(5):643–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Li L, Zhang D, et al. Gadolinium-doped carbon quantum dots loaded magnetite nanoparticles as a bimodal nanoprobe for each fluorescence and magnetic resonance imaging. Magn Reson Imaging. 2020;68:113–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruckman MA, Jiang Okay, Simpson EJ, et al. Twin-modal magnetic resonance and fluorescence imaging of atherosclerotic plaques in vivo utilizing VCAM-1 focused tobacco mosaic virus. Nano Lett. 2014;14(3):1551–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kwon SP, Jeon S, Lee SH, et al. Thrombin-activatable fluorescent peptide integrated gold nanoparticles for twin optical/computed tomography thrombus imaging. Biomaterials. 2018;150:125–36.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu Q, Pan W, Wu G, et al. CD40-targeting magnetic nanoparticles for MRI/optical dual-modality molecular imaging of susceptible atherosclerotic plaques. Atherosclerosis. 2023;369:17–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao Y, Lan X, Zhang Y, et al. Biomimetic nanomedicines for exact atherosclerosis theranostics. Acta Pharm Sin B. 2023;13(11):4442–60.

    Article 
    PubMed 

    Google Scholar
     

  • McCarthy JR, Korngold E, Weissleder R, et al. A light-weight-activated theranostic nanoagent for focused macrophage ablation in inflammatory atherosclerosis. Small. 2010;6(18):2041–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lobatto ME, Fayad ZA, Silvera S, et al. Multimodal medical imaging to longitudinally assess a nanomedical anti-inflammatory remedy in experimental atherosclerosis. Mol Pharm. 2010;7(6):2020–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iverson NM, Plourde NM, Sparks SM, et al. Twin use of amphiphilic macromolecules as ldl cholesterol efflux triggers and inhibitors of macrophage athero-inflammation. Biomaterials. 2011;32(32):8319–27.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tavares ER, Freitas FR, Diament J, et al. Discount of atherosclerotic lesions in rabbits handled with etoposide related to cholesterol-rich nanoemulsions. Int J Nanomed. 2011;6:2297–304.

    CAS 

    Google Scholar
     

  • Wu Z, Chen C, Zhang B, et al. EGFP-EGF1-conjugated poly(lactic-co-glycolic acid) nanoparticles, a brand new diagnostic device and drug service for atherosclerosis. Int J Nanomed. 2019;14:2609–18.

    Article 
    CAS 

    Google Scholar
     

  • Zhao Y, Imura T, Leman LJ, et al. Mimicry of high-density lipoprotein: useful peptide-lipid nanoparticles primarily based on multivalent peptide constructs. J Am Chem Soc. 2013;135(36):13414–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shin MD, Ortega-Rivera OA, Steinmetz NF. Multivalent show of ApoAI peptides on the floor of tobacco mosaic virus nanotubes improves ldl cholesterol efflux. Bioconjug Chem. 2022;33(10):1922–33.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mu D, Li J, Qi Y, et al. Hyaluronic acid-coated polymeric micelles with hydrogen peroxide scavenging to encapsulate statins for assuaging atherosclerosis. J Nanobiotechnol. 2020;18(1):179.

    Article 
    CAS 

    Google Scholar
     

  • Xie S, Mo C, Cao W, et al. Micro organism-propelled microtubular motors for environment friendly penetration and concentrating on supply of thrombolytic brokers. Acta Biomater. 2022;142:49–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie DM, Zhong Q, Xu X, et al. Alpha lipoic acid-loaded electrospun fibrous patch movies shield coronary heart in acute myocardial infarction mice by inhibiting oxidative stress. Int J Pharm. 2023;632: 122581.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li H, Zhu J, Xu YW, et al. Notoginsenoside R1-loaded mesoporous silica nanoparticles concentrating on the location of damage by means of inflammatory cells improves coronary heart restore after myocardial infarction. Redox Biol. 2022;54: 102384.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lan M, Hou M, Yan J, et al. Cardiomyocyte-targeted anti-inflammatory nanotherapeutics towards myocardial ischemia reperfusion (IR) damage. Nano Res. 2022;15(10):9125–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bajaj A, Rao MR, Pardeshi A, et al. Nanocrystallization by evaporative antisolvent method for solubility and bioavailability enhancement of telmisartan. AAPS PharmSciTech. 2012;13(4):1331–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rachmawati H, Soraya IS, Kurniati NF, et al. In vitro research on antihypertensive and antihypercholesterolemic results of a curcumin nanoemulsion. Sci Pharm. 2016;84(1):131–40.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Southgate L, Machado RD, Gräf S, et al. Molecular genetic framework underlying pulmonary arterial hypertension. Nat Rev Cardiol. 2020;17(2):85–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Spiekerkoetter E, Kawut SM, de Jesus Perez VA. New and rising therapies for pulmonary arterial hypertension. Annu Rev Med. 2019;70:45–59.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teng C, Li B, Lin C, et al. Focused supply of baicalein-p53 advanced to easy muscle cells reverses pulmonary hypertension. J Management Launch. 2022;341:591–604.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vani JR, Mohammadi MT, Foroshani MS, et al. Polyhydroxylated fullerene nanoparticles attenuate mind infarction and oxidative stress in rat mannequin of ischemic stroke. Excli j. 2016;15:378–90.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choudhury AA, Devi RV. Gestational diabetes mellitus—a metabolic and reproductive dysfunction. Biomed Pharmacother. 2021;143: 112183.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bolli GB, Porcellati F, Lucidi P, et al. The physiological foundation of insulin remedy in folks with diabetes mellitus. Diabetes Res Clin Pract. 2021;175: 108839.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarkar S, Ekbal Kabir M, Kalita J, et al. Mesoporous silica nanoparticles: drug supply automobiles for antidiabetic molecules. ChemBioChem. 2023;24(7): e202200672.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li X, Peng X, Zoulikha M, et al. Multifunctional nanoparticle-mediated combining remedy for human ailments. Sign Transduct Goal Ther. 2024;9(1):1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunt NJ, Lockwood GP, Heffernan SJ, et al. Oral nanotherapeutic formulation of insulin with lowered episodes of hypoglycaemia. Nat Nanotechnol. 2024;19(4):534–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu B, Jiang G, Yu W, et al. H(2)O(2)-responsive mesoporous silica nanoparticles built-in with microneedle patches for the glucose-monitored transdermal supply of insulin. J Mater Chem B. 2017;5(41):8200–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shrestha N, Araújo F, Shahbazi MA, et al. Oral hypoglycaemic impact of GLP-1 and DPP4 inhibitor primarily based nanocomposites in a diabetic animal mannequin. J Management Launch. 2016;232:113–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rocha S, Lucas M, Ribeiro D, et al. Nano-based drug supply programs used as automobiles to boost polyphenols therapeutic impact for diabetes mellitus remedy. Pharmacol Res. 2021;169: 105604.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Zhou J, Zhang T, et al. Facile fabrication of an amentoflavone-loaded micelle system for oral supply to enhance bioavailability and hypoglycemic results in KKAy mice. ACS Appl Mater Interfaces. 2019;11(13):12904–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen H, Khemtong C, Yang X, et al. Nanonization methods for poorly water-soluble medicine. Drug Discovery As we speak. 2011;16(7):354–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goyal R, Macri LK, Kaplan HM, et al. Nanoparticles and nanofibers for topical drug supply. J Management Launch. 2016;240:77–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Güngör S, Kahraman E. Nanocarriers mediated cutaneous drug supply. Eur J Pharm Sci. 2021;158: 105638.

    Article 
    PubMed 

    Google Scholar
     

  • Ren J, Liu T, Bi B, et al. Improvement and analysis of tacrolimus loaded nano-transferosomes for pores and skin concentrating on and dermatitis remedy. J Pharm Sci. 2024;113(2):471–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fratoddi I, Benassi L, Botti E, et al. Results of topical methotrexate loaded gold nanoparticle in cutaneous inflammatory mouse mannequin. Nanomedicine. 2019;17:276–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moazeni M, Kelidari HR, Saeedi M, et al. Time to beat fluconazole resistant Candida isolates: strong lipid nanoparticles as a novel antifungal drug supply system. Colloids Surf B Biointerfaces. 2016;142:400–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong P, Sahle FF, Lohan SB, et al. pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug launch on the pores and skin. J Management Launch. 2019;295:214–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao Q, Lu Y, Yao W, et al. Molybdenum nanoparticles as a possible topical treatment for alopecia remedy by means of antioxidant pathways that differ from minoxidil. J Hint Elem Med Biol. 2024;82: 127368.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor AW. Ocular immune privilege. Eye. 2009;23(10):1885–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaudana R, Ananthula HK, Parenky A, et al. Ocular drug supply. Aaps j. 2010;12(3):348–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chakraborty M, Banerjee D, Mukherjee S, et al. Exploring the development of polymer-based nano-formulations for ocular drug supply programs: an explicative overview. Polym Bull. 2023;80:11759–77.

    Article 
    CAS 

    Google Scholar
     

  • Li Okay, Lin M, Huang Okay, et al. Therapeutic impact and mechanism of motion of pterostilbene nano medicine in dry eye fashions. Exp Eye Res. 2024;241: 109836.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui W, Chen S, Hu T, et al. Nanoceria-mediated cyclosporin a supply for dry eye illness administration by means of modulating immune-epithelial crosstalk. ACS Nano. 2024;18(17):11084–102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hakim A, Guido B, Narsineni L, et al. Gene remedy methods for glaucoma from IOP discount to retinal neuroprotection: progress in direction of non-viral programs. Adv Drug Deliv Rev. 2023;196: 114781.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou X, Rong R, Liang G, et al. Self-assembly hypoxic and ROS twin response nano prodrug as a brand new therapeutic method for glaucoma remedies. Adv Sci. 2024;11(41): e2407043.

    Article 

    Google Scholar
     

  • Maulvi FA, Desai DT, Shetty KH, et al. Advances and challenges within the nanoparticles-laden contact lenses for ocular drug supply. Int J Pharm. 2021;608: 121090.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maulvi FA, Soni PD, Patel PJ, et al. Managed bimatoprost launch from graphene oxide laden contact lenses: In vitro and in vivo research. Colloids Surf B Biointerfaces. 2021;208: 112096.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ando H, Abu Lila AS, Kawanishi M, et al. Reactivity of IgM antibodies elicited by PEGylated liposomes or PEGylated lipoplexes towards auto and overseas antigens. J Management Launch. 2018;270:114–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berndt A, Lee SY, Ramakrishnan C, et al. Construction-guided transformation of channelrhodopsin right into a light-activated chloride channel. Science. 2014;344(6182):420–4.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou Y, Cai G, Wang Y, et al. Microarray chip-based high-throughput screening of neurofilament mild chain self-assembling peptide for noninvasive monitoring of Alzheimer’s illness. ACS Nano. 2024;18(28):18160–75.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Witten J, Raji I, Manan RS, et al. Synthetic intelligence-guided design of lipid nanoparticles for pulmonary gene remedy. Nat Biotechnol. 2024. https://doi.org/10.1038/s41587-024-02490-y.

    Article 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles

    error: Content is protected !!