27.2 C
Paris
Friday, June 27, 2025

Mesoscale dynamics of electrosorbed ions in fast-charging carbon-based nanoporous electrodes


  • Forse, A. C., Merlet, C., Griffin, J. M. & Gray, C. P. New views on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon, P. & Gogotsi, Y. Views for electrochemical capacitors and associated gadgets. Nat. Mater. 19, 1151–1163 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Zhu, Y. & Cui, Y. Challenges and alternatives in the direction of fast-charging battery supplies. Nat. Vitality 4, 540–550 (2019).

    Article 

    Google Scholar
     

  • Armand, M. & Tarascon, J. M. Constructing higher batteries. Nature 451, 652–657 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gogotsi, Y. & Simon, P. True efficiency metrics in electrochemical power storage. Science 334, 917–918 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, C. et al. Attaining excessive power density and excessive energy density with pseudocapacitive supplies. Nat. Rev. Mater. 5, 5–19 (2019).

    Article 

    Google Scholar
     

  • Bard, A. J., Faulkner, L. R. & White, H. S. Electrochemical Strategies: Fundamentals and Purposes (Wiley, 2022).

  • Aluru, N. R. et al. Fluids and electrolytes below confinement in single-digit nanopores. Chem. Rev. 123, 2737–2831 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Hayre, R., Cha, S.-W., Colella, W. & Prinz, F. B. Gas Cell Fundamentals (Wiley, 2016).

  • Hu, Y. et al. Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature 624, 74–79 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robin, P. et al. Lengthy-term reminiscence and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161–167 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. & Gogotsi, Y. Vitality storage: the long run enabled by nanomaterials. Science 366, eaan8285 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fleischmann, S. et al. Steady transition from double-layer to Faradaic cost storage in confined electrolytes. Nat. Vitality 7, 222–228 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Segalini, J., Daffos, B., Taberna, P. L., Gogotsi, Y. & Simon, P. Qualitative electrochemical impedance spectroscopy examine of ion transport into sub-nanometer carbon pores in electrochemical double layer capacitor electrodes. Electrochim. Acta 55, 7489–7494 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Forse, A. C. et al. Direct commentary of ion dynamics in supercapacitor electrodes utilizing in situ diffusion NMR spectroscopy. Nat. Vitality 2, 16216 (2017).

    Article 

    Google Scholar
     

  • Shao, H., Wu, Y. C., Lin, Z., Taberna, P. L. & Simon, P. Nanoporous carbon for electrochemical capacitive power storage. Chem. Soc. Rev. 49, 3005–3039 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Electrode materials–ionic liquid coupling for electrochemical power storage. Nat. Rev. Mater. 5, 787–808 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Structural dysfunction determines capacitance in nanoporous carbons. Science 384, 321–325 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newman, J. S. & Tobias, C. W. Theoretical evaluation of present distribution in porous electrodes. J. Electrochem. Soc. 109, 1183 (1962).

    Article 
    CAS 

    Google Scholar
     

  • Newman, J. & Tiedemann, W. Porous‐electrode principle with battery functions. AlChE J. 21, 25–41 (2004).

    Article 

    Google Scholar
     

  • Dunn, D. & Newman, J. Predictions of particular energies and particular powers of double-layer capacitors utilizing a simplified mannequin. J. Electrochem. Soc. 147, 820 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D steel carbides and nitrides (MXenes) for power storage. Nat. Rev. Mater. 2, 16098 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Pomerantseva, E. & Gogotsi, Y. Two-dimensional heterostructures for power storage. Nat. Vitality 2, 17089 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene supplies for compact capacitive power storage. Science 341, 534–537 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. et al. Two-dimensional quantum-sheet movies with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 17, 153–158 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klemen, Z. et al. Derivation of transmission line mannequin from the concentrated answer principle (CST) for porous electrodes. J. Electrochem. Soc. 168, 070543 (2021).

    Article 

    Google Scholar
     

  • Meddings, N. et al. Utility of electrochemical impedance spectroscopy to business Li-ion cells: a evaluate. J. Energy Sources 480, 228742 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mei, B. A. et al. Bodily interpretations of Nyquist plots for EDLC electrodes and gadgets. J. Phys. Chem. C 122, 194–206 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Solar, H. et al. Hierarchical 3D electrodes for electrochemical power storage. Nat. Rev. Mater. 4, 45–60 (2018).

    Article 

    Google Scholar
     

  • Gupta, A., Zuk, P. J. & Stone, H. A. Charging dynamics of overlapping double layers in a cylindrical nanopore. Phys. Rev. Lett. 125, 076001 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pilon, L., Wang, H. & d’Entremont, A. Latest advances in continuum modeling of interfacial and transport phenomena in electrical double layer capacitors. J. Electrochem. Soc. 162, A5158 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Biesheuvel, P. M. & Bazant, M. Z. Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Phys. Rev. E 81, 031502 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Y., Lian, C., Berrueta, M. U., Liu, H. & van Roij, R. Microscopic mannequin for cyclic voltammetry of porous electrodes. Phys. Rev. Lett. 128, 206001 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirzadeh, M., Gibou, F. & Squires, T. M. Enhanced charging kinetics of porous electrodes: floor conduction as a short-circuit mechanism. Phys. Rev. Lett. 113, 097701 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dydek, E. V. et al. Overlimiting present in a microchannel. Phys. Rev. Lett. 107, 118301 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Levie, D. R. On porous electrodes in electrolyte options—IV. Electrochim. Acta 9, 1231–1245 (1964).

    Article 

    Google Scholar
     

  • Li, P. et al. A evaluate of compact carbon design for supercapacitors with excessive volumetric efficiency. Small 17, e2007548 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Shao, Y. et al. Design and mechanisms of uneven supercapacitors. Chem. Rev. 118, 9233–9280 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Tuning the interlayer spacing of graphene laminate movies for environment friendly pore utilization in the direction of compact capacitive power storage. Nat. Vitality 5, 160–168 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dou, Q. & Park, H. S. Perspective on excessive‐power carbon‐based mostly supercapacitors. Vitality Environ. Sci. 3, 286–305 (2020).

    CAS 

    Google Scholar
     

  • Lukatskaya, M. et al. Extremely-high-rate pseudocapacitive power storage in two-dimensional transition steel carbides. Nat. Vitality 2, 17105 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lu, X. et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling. Nat. Commun. 11, 2079 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. et al. Gradient design for high-energy and high-power batteries. Adv. Mater. 34, e2202780 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Decreasing the cost provider transport barrier in functionally layer-graded electrodes. Angew. Chem. Int. Ed. 56, 14847–14852 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ramadesigan, V., Methekar, R. N., Latinwo, F., Braatz, R. D. & Subramanian, V. R. Optimum porosity distribution for minimized ohmic drop throughout a porous electrode. J. Electrochem. Soc. 157, A1328–A1334 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kilic, M. S., Bazant, M. Z. & Ajdari, A. Steric results within the dynamics of electrolytes at giant utilized voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 75, 021503 (2007).

    Article 

    Google Scholar
     

  • Gonella, G. et al. Water at charged interfaces. Nat. Rev. Chem. 5, 466–485 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. Floor diffusion enhanced ion transport via two-dimensional nanochannels. Sci. Adv. 9, eadi8493 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Y. et al. New structural insights into densely assembled decreased graphene oxide membranes. Adv. Funct. Mater. 32, 2201535 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kovtyukhova, N. I. et al. Layer-by-layer meeting of ultrathin composite movies from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Hummers, W. S. & Offeman, R. E. Preparation of graphite oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, C., Jiang, G., Simon, G. P., Liu, J. Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion via layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, C. et al. Ion transport in advanced layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2, e1501272 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, J. Understanding the electrical double-layer construction, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D. et al. Ion-specific nanoconfinement impact in multilayered graphene membranes: a mixed nuclear magnetic resonance and computational examine. Nano Lett. 23, 5555–5561 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles

    error: Content is protected !!