Forse, A. C., Merlet, C., Griffin, J. M. & Gray, C. P. New views on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).
Simon, P. & Gogotsi, Y. Views for electrochemical capacitors and associated gadgets. Nat. Mater. 19, 1151–1163 (2020).
Liu, Y., Zhu, Y. & Cui, Y. Challenges and alternatives in the direction of fast-charging battery supplies. Nat. Vitality 4, 540–550 (2019).
Armand, M. & Tarascon, J. M. Constructing higher batteries. Nature 451, 652–657 (2008).
Gogotsi, Y. & Simon, P. True efficiency metrics in electrochemical power storage. Science 334, 917–918 (2011).
Choi, C. et al. Attaining excessive power density and excessive energy density with pseudocapacitive supplies. Nat. Rev. Mater. 5, 5–19 (2019).
Bard, A. J., Faulkner, L. R. & White, H. S. Electrochemical Strategies: Fundamentals and Purposes (Wiley, 2022).
Aluru, N. R. et al. Fluids and electrolytes below confinement in single-digit nanopores. Chem. Rev. 123, 2737–2831 (2023).
O’Hayre, R., Cha, S.-W., Colella, W. & Prinz, F. B. Gas Cell Fundamentals (Wiley, 2016).
Hu, Y. et al. Ultralow-resistance electrochemical capacitor for integrable line filtering. Nature 624, 74–79 (2023).
Robin, P. et al. Lengthy-term reminiscence and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161–167 (2023).
Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y. & Gogotsi, Y. Vitality storage: the long run enabled by nanomaterials. Science 366, eaan8285 (2019).
Fleischmann, S. et al. Steady transition from double-layer to Faradaic cost storage in confined electrolytes. Nat. Vitality 7, 222–228 (2022).
Segalini, J., Daffos, B., Taberna, P. L., Gogotsi, Y. & Simon, P. Qualitative electrochemical impedance spectroscopy examine of ion transport into sub-nanometer carbon pores in electrochemical double layer capacitor electrodes. Electrochim. Acta 55, 7489–7494 (2010).
Forse, A. C. et al. Direct commentary of ion dynamics in supercapacitor electrodes utilizing in situ diffusion NMR spectroscopy. Nat. Vitality 2, 16216 (2017).
Shao, H., Wu, Y. C., Lin, Z., Taberna, P. L. & Simon, P. Nanoporous carbon for electrochemical capacitive power storage. Chem. Soc. Rev. 49, 3005–3039 (2020).
Wang, X. et al. Electrode materials–ionic liquid coupling for electrochemical power storage. Nat. Rev. Mater. 5, 787–808 (2020).
Liu, X. et al. Structural dysfunction determines capacitance in nanoporous carbons. Science 384, 321–325 (2024).
Newman, J. S. & Tobias, C. W. Theoretical evaluation of present distribution in porous electrodes. J. Electrochem. Soc. 109, 1183 (1962).
Newman, J. & Tiedemann, W. Porous‐electrode principle with battery functions. AlChE J. 21, 25–41 (2004).
Dunn, D. & Newman, J. Predictions of particular energies and particular powers of double-layer capacitors utilizing a simplified mannequin. J. Electrochem. Soc. 147, 820 (2000).
Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D steel carbides and nitrides (MXenes) for power storage. Nat. Rev. Mater. 2, 16098 (2017).
Pomerantseva, E. & Gogotsi, Y. Two-dimensional heterostructures for power storage. Nat. Vitality 2, 17089 (2017).
Yang, X., Cheng, C., Wang, Y., Qiu, L. & Li, D. Liquid-mediated dense integration of graphene supplies for compact capacitive power storage. Science 341, 534–537 (2013).
Chen, W. et al. Two-dimensional quantum-sheet movies with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 17, 153–158 (2022).
Xia, Y. et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018).
Klemen, Z. et al. Derivation of transmission line mannequin from the concentrated answer principle (CST) for porous electrodes. J. Electrochem. Soc. 168, 070543 (2021).
Meddings, N. et al. Utility of electrochemical impedance spectroscopy to business Li-ion cells: a evaluate. J. Energy Sources 480, 228742 (2020).
Mei, B. A. et al. Bodily interpretations of Nyquist plots for EDLC electrodes and gadgets. J. Phys. Chem. C 122, 194–206 (2018).
Solar, H. et al. Hierarchical 3D electrodes for electrochemical power storage. Nat. Rev. Mater. 4, 45–60 (2018).
Gupta, A., Zuk, P. J. & Stone, H. A. Charging dynamics of overlapping double layers in a cylindrical nanopore. Phys. Rev. Lett. 125, 076001 (2020).
Pilon, L., Wang, H. & d’Entremont, A. Latest advances in continuum modeling of interfacial and transport phenomena in electrical double layer capacitors. J. Electrochem. Soc. 162, A5158 (2015).
Biesheuvel, P. M. & Bazant, M. Z. Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Phys. Rev. E 81, 031502 (2010).
Lin, Y., Lian, C., Berrueta, M. U., Liu, H. & van Roij, R. Microscopic mannequin for cyclic voltammetry of porous electrodes. Phys. Rev. Lett. 128, 206001 (2022).
Mirzadeh, M., Gibou, F. & Squires, T. M. Enhanced charging kinetics of porous electrodes: floor conduction as a short-circuit mechanism. Phys. Rev. Lett. 113, 097701 (2014).
Dydek, E. V. et al. Overlimiting present in a microchannel. Phys. Rev. Lett. 107, 118301 (2011).
Levie, D. R. On porous electrodes in electrolyte options—IV. Electrochim. Acta 9, 1231–1245 (1964).
Li, P. et al. A evaluate of compact carbon design for supercapacitors with excessive volumetric efficiency. Small 17, e2007548 (2021).
Shao, Y. et al. Design and mechanisms of uneven supercapacitors. Chem. Rev. 118, 9233–9280 (2018).
Li, Z. et al. Tuning the interlayer spacing of graphene laminate movies for environment friendly pore utilization in the direction of compact capacitive power storage. Nat. Vitality 5, 160–168 (2020).
Dou, Q. & Park, H. S. Perspective on excessive‐power carbon‐based mostly supercapacitors. Vitality Environ. Sci. 3, 286–305 (2020).
Lukatskaya, M. et al. Extremely-high-rate pseudocapacitive power storage in two-dimensional transition steel carbides. Nat. Vitality 2, 17105 (2017).
Lu, X. et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling. Nat. Commun. 11, 2079 (2020).
Wu, J. et al. Gradient design for high-energy and high-power batteries. Adv. Mater. 34, e2202780 (2022).
Zhang, Y. et al. Decreasing the cost provider transport barrier in functionally layer-graded electrodes. Angew. Chem. Int. Ed. 56, 14847–14852 (2017).
Ramadesigan, V., Methekar, R. N., Latinwo, F., Braatz, R. D. & Subramanian, V. R. Optimum porosity distribution for minimized ohmic drop throughout a porous electrode. J. Electrochem. Soc. 157, A1328–A1334 (2010).
Kilic, M. S., Bazant, M. Z. & Ajdari, A. Steric results within the dynamics of electrolytes at giant utilized voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 75, 021503 (2007).
Gonella, G. et al. Water at charged interfaces. Nat. Rev. Chem. 5, 466–485 (2021).
Jiang, Y. et al. Floor diffusion enhanced ion transport via two-dimensional nanochannels. Sci. Adv. 9, eadi8493 (2023).
Cao, Y. et al. New structural insights into densely assembled decreased graphene oxide membranes. Adv. Funct. Mater. 32, 2201535 (2022).
Kovtyukhova, N. I. et al. Layer-by-layer meeting of ultrathin composite movies from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11, 771–778 (1999).
Hummers, W. S. & Offeman, R. E. Preparation of graphite oxide. J. Am. Chem. Soc. 80, 1339 (1958).
Cheng, C., Jiang, G., Simon, G. P., Liu, J. Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion via layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).
Cheng, C. et al. Ion transport in advanced layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2, e1501272 (2016).
Wu, J. Understanding the electrical double-layer construction, capacitance, and charging dynamics. Chem. Rev. 122, 10821–10859 (2022).
Liu, D. et al. Ion-specific nanoconfinement impact in multilayered graphene membranes: a mixed nuclear magnetic resonance and computational examine. Nano Lett. 23, 5555–5561 (2023).