Davis, V. A. et al. Section habits and rheology of SWNTs in superacids. Macromolecules 37, 154–160 (2004).
Timasheff, S. N. & Inoue, H. Preferential binding of solvent elements to proteins in blended water–natural solvent programs. Biochemistry 7, 2501–2513 (1968).
Finney, J. & Soper, A. Solvent construction and perturbations in options of chemical and organic significance. Chem. Soc. Rev. 23, 1–10 (1994).
Nemoto, N., Schrag, J. L., Ferry, J. D. & Fulton, R. W. Infinite‐dilution viscoelastic properties of tobacco mosaic virus. Biopolymers 14, 409–417 (1975).
Clancy, A. J. et al. Reductive dissolution of supergrowth carbon nanotubes for harder nanocomposites by reactive coagulation spinning. Nanoscale 9, 8764–8773 (2017).
Davis, V. A. et al. True options of single-walled carbon nanotubes for meeting into macroscopic supplies. Nat. Nanotechnol. 4, 830–834 (2009).
Clancy, A. J. et al. Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem. Rev. 118, 7363–7408 (2018).
Eichmann, S. L., Anekal, S. G. & Bevan, M. A. Electrostatically confined nanoparticle interactions and dynamics. Langmuir 24, 714–721 (2008).
Batista, C. A. S., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 1242477 (2015).
Fumagalli, L. et al. Anomalously low dielectric fixed of confined water. Science 360, 1339–1342 (2018).
Cullen, P. L. et al. Ionic options of two-dimensional supplies. Nat. Chem. 9, 244–249 (2017).
Chmiola, J. et al. Anomalous enhance in carbon capacitance at pore sizes lower than 1 nanometer. Science 313, 1760–1763 (2006).
Prehal, C. et al. Monitoring the structural association of ions in carbon supercapacitor nanopores utilizing in situ small-angle X-ray scattering. Power Environ. Sci. 8, 1725–1735 (2015).
Prehal, C. et al. Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Power 2, 1–8 (2017).
Deschamps, M. et al. Exploring electrolyte group in supercapacitor electrodes with solid-state NMR. Nat. Mater. 12, 351–358 (2013).
Forse, A. C., Merlet, C. I., Griffin, J. M. & Gray, C. P. New views on the charging mechanisms of supercapacitors. J. Am. Chem. Soc. 138, 5731–5744 (2016).
Kralchevsky, P. A., Danov, Ok. D. & Basheva, E. S. Hydration drive as a result of lowered screening of the electrostatic repulsion in few-nanometer-thick movies. Curr. Opin. Colloid Interf. Sci. 16, 517–524 (2011).
Gavryushov, S. & Zielenkiewicz, P. Electrostatic potential of B-DNA: impact of interionic correlations. Biophys. J. 75, 2732–2742 (1998).
Gavryushov, S. Dielectric saturation of the ion hydration shell and interplay between two double helices of DNA in mono-and multivalent electrolyte options: foundations of the ε-modified Poisson–Boltzmann principle. J. Phys. Chem. B 111, 5264–5276 (2007).
Zobel, M., Neder, R. B. & Kimber, S. A. Common solvent restructuring induced by colloidal nanoparticles. Science 347, 292–294 (2015).
Thomä, S. L. & Zobel, M. Ethanol–water motifs—a re-interpretation of the double-difference pair distribution capabilities of aqueous iron oxide nanoparticle dispersions. J. Chem. Phys. 158, 224704 (2023).
Soper, A. Joint construction refinement of X-ray and neutron diffraction knowledge on disordered supplies: software to liquid water. J. Phys. Cond. Matt. 19, 335206 (2007).
Soper, A. Empirical potential Monte Carlo simulation of fluid construction. Chem. Phys. 202, 295–306 (1996).
Bowron, D. et al. NIMROD: the close to and intermediate vary order diffractometer of the ISIS second goal station. Rev. Sci. Instrum. 81, 033905 (2010).
Howard, C. A., Thompson, H., Wasse, J. C. & Skipper, N. T. Formation of big solvation shells round fulleride anions in liquid ammonia. J. Am. Chem. Soc. 126, 13228–13229 (2004).
Basma, N. et al. The liquid construction of the solvents dimethylformamide (DMF) and dimethylacetamide (DMA). Mol. Phys. https://doi.org/10.1080/00268976.2019.1649494 (2019).
Pénicaud, A., Poulin, P., Derré, A., Anglaret, E. & Petit, P. Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127, 8–9 (2005).
Clancy, A. J., Melbourne, J. & Shaffer, M. S. P. A one-step path to solubilised, purified or functionalised single-walled carbon nanotubes. J. Mater. Chem. A 3, 16708–16715 (2015).
Jiang, C. et al. Elevated solubility, liquid-crystalline section, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7, 4503–4510 (2013).
Soper, A. Partial construction elements from disordered supplies diffraction knowledge: an method utilizing empirical potential construction refinement. Phys. Rev. B 72, 104204 (2005).
Mandle, R. J. Implementation of a cylindrical distribution operate for the evaluation of anisotropic molecular dynamics simulations. PLoS ONE 17, e0279679 (2022).
Basma, N. S., Headen, T. F., Shaffer, M. S., Skipper, N. T. & Howard, C. A. Native construction and polar order in liquid N-methyl-2-pyrrolidone (NMP). J. Phys. Chem. B 122, 8963–8971 (2018).
Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered supplies. Science 340, 1226419 (2013).
Voiry, D., Drummond, C. & Pénicaud, A. Portrait of carbon nanotube salts as soluble polyelectrolytes. Smooth Matt. 7, 7998–8001 (2011).
Yang, Z. et al. Carbon nanotube- and graphene-based nanomaterials and purposes in high-voltage supercapacitor: a evaluation. Carbon 141, 467–480 (2019).
Li, Y., Chen, N., Li, Z., Shao, H. & Qu, L. Frontiers of carbon supplies as capacitive deionization electrodes. Dalton Trans. 49, 5006–5014 (2020).
Siddons, G. P., Merchin, D., Again, J. H., Jeong, J. Ok. & Shim, M. Extremely environment friendly gating and doping of carbon nanotubes with polymer electrolytes. Nano Lett. 4, 927–931 (2004).
Fogden, S. A., Howard, C. A., Heenan, R. Ok., Skipper, N. T. & Shaffer, M. S. Scalable methodology for the reductive dissolution, purification, and separation of single-walled carbon nanotubes. ACS Nano 6, 54–62 (2011).
Skipper, N. et al. Native and long-range solute and solvent ordering in concentrated nanotube gels and options. ISIS Neutron and Muon Supply Information Journal https://doi.org/10.5286/ISIS.E.RB1910503 (2022).
Clancy, A. J. et al. Actual-time mechanistic research of carbon nanotube anion functionalisation by way of open circuit voltammetry. Chem. Sci. 10, 3300–3306 (2019).