Tsoi, M. et al. Excitation of a magnetic multilayer by an electrical present. Phys. Rev. Lett. 80, 4281 (1998).
Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Present-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149 (2000).
Kiselev, S. I. et al. Microwave oscillations of a nanomagnet pushed by a spin-polarized present. Nature 425, 380 (2003).
Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E. & Silva, T. J. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 level contacts. Phys. Rev. Lett. 92, 027201 (2004).
Chen, T. et al. Spin-torque and spin-Corridor nano-oscillators. Proc. IEEE 104, 1919 (2016).
Tulapurkar, A. A. et al. Spin-torque diode impact in magnetic tunnel junctions. Nature 438, 339 (2005).
Sankey, J. C. et al. Spin-transfer-driven ferromagnetic resonance of particular person nanomagnets. Phys. Rev. Lett. 96, 227601 (2006).
Miwa, S. et al. Extremely delicate nanoscale spin-torque diode. Nat. Mater. 13, 50 (2013).
Locatelli, N., Cros, V. & Grollier, J. Spin-torque constructing blocks. Nat. Mater. 13, 11 (2013).
Finocchio, G. et al. Views on spintronic diodes. Appl. Phys. Lett. 118, 160502 (2021).
Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Corridor impact. Phys. Rev. Lett. 106, 036601 (2011).
Bonetti, S., Muduli, P., Mancoff, F. & Åkerman, J. Spin torque oscillator frequency versus magnetic subject angle: the prospect of operation past 65 GHz. Appl. Phys. Lett. 94, 102507 (2009).
Houssameddine, D. et al. Spin-torque oscillator utilizing a perpendicular polarizer and a planar free layer. Nat. Mater. 6, 447 (2007).
Gomonay, H. V. & Loktev, V. M. Spin switch and current-induced switching in antiferromagnets. Phys. Rev. B 81, 144427 (2010).
Khymyn, R., Lisenkov, I., Tiberkevich, V., Ivanov, B. A. & Slavin, A. Antiferromagnetic THz-frequency Josephson-like oscillator pushed by spin present. Sci. Rep. 7, 43705 (2017).
Sulymenko, O. R. et al. Terahertz-frequency spin Corridor auto-oscillator based mostly on a canted antiferromagnet. Phys. Rev. Appl. 8, 064007 (2017).
Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Corridor impact arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).
Nakatsuji, S., Kiyohara, N. & Higo, T. Massive anomalous Corridor impact in a non-collinear antiferromagnet at room temperature. Nature 527, 212 (2015).
Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347 (2011).
Marti, X. et al. Room-temperature antiferromagnetic reminiscence resistor. Nat. Mater. 13, 367 (2014).
Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490 (2023).
Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485 (2023).
Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587 (2016).
Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608 (2020).
Li, J. et al. Spin present from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70 (2020).
Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160 (2020).
Safin, A. et al. Electrically tunable detector of THz-frequency indicators based mostly on an antiferromagnet. Appl. Phys. Lett. 117, 222411 (2020).
Yang, D. et al. Electrically tunable terahertz resonance in antiferromagnetic NiO/Pt heterostructures. Phys. Rev. Appl. 20, 014023 (2023).
Zhou, Y. et al. Spin-torque-driven antiferromagnetic resonance. Sci. Adv. 10, eadk7935 (2024).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231 (2016).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242 (2018).
Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Corridor antiferromagnets. Nat. Rev. Mater. 7, 482 (2022).
Nakatsuji, S. & Arita, R. Topological magnets: capabilities based mostly on Berry part and multipoles. Annu. Rev. Condens. Matter Phys. 13, 119 (2022).
Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684 (2023).
Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364 (2021).
Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428 (2017).
Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360 (2020).
Suzuki, M.-T., Koretsune, T., Ochi, M. & Arita, R. Cluster multipole principle for anomalous Corridor impact in antiferromagnets. Phys. Rev. B 95, 094406 (2017).
Kuroda, Okay. et al. Proof for magnetic Weyl fermions in a correlated metallic. Nat. Mater. 16, 1090 (2017).
Yang, H. et al. Topological Weyl semimetals within the chiral antiferromagnetic supplies Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).
Zhang, Y. et al. Robust anisotropic anomalous Corridor impact and spin Corridor impact within the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95, 075128 (2017).
Ikhlas, M. et al. Massive anomalous Nernst impact at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085 (2017).
Li, X. et al. Anomalous Nernst and Righi-Leduc results in Mn3Sn: Berry curvature and entropy circulate. Phys. Rev. Lett. 119, 056601 (2017).
Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by present. Nature 607, 474 (2022).
Pal, B. et al. Setting of the magnetic construction of chiral kagome antiferromagnets by a seeded spin–orbit torque. Sci. Adv. 8, eabo5930 (2022).
Yan, G. Q. et al. Quantum sensing and imaging of spin–orbit-torque-driven spin dynamics within the non-collinear antiferromagnet Mn3Sn. Adv. Mater. 34, 2200327 (2022).
Sakamoto, S. et al. Statement of spontaneous x-ray magnetic round dichroism in a chiral antiferromagnet. Phys. Rev. B 104, 134431 (2021).
Yoon, J.-Y. et al. Handedness anomaly in a non-collinear antiferromagnet underneath spin–orbit torque. Nat. Mater. 22, 1106 (2023).
Krishnaswamy, G. Okay. et al. Time-dependent multistate switching of topological antiferromagnetic order in Mn3Sn. Phys. Rev. Appl. 18, 024064 (2022).
Rippard, W. H. et al. Injection locking and part management of spin switch nano-oscillators. Phys. Rev. Lett. 95, 067203 (2005).
Georges, B. et al. Coupling effectivity for part locking of a spin switch nano-oscillator to a microwave present. Phys. Rev. Lett. 101, 017201 (2008).
Fang, B. et al. Large spin-torque diode sensitivity within the absence of bias magnetic subject. Nat. Commun. 7, 11259 (2016).
You, Y. et al. Anomalous Corridor impact–like habits with in-plane magnetic subject in noncollinear antiferromagnetic Mn3Sn movies. Adv. Electron. Mater. 5, 1800818 (2019).
Yoon, J. et al. Crystal orientation and anomalous Corridor impact of sputter-deposited non-collinear antiferromagnetic Mn3Sn skinny movies. Appl. Phys. Specific 13, 013001 (2019).
Nomoto, T. & Arita, R. Cluster multipole dynamics in noncollinear antiferromagnets. Phys. Rev. Res. 2, 012045 (2020).